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ABSTRACT: A well-designed silicon solar cell entails a complicated optimisation of its heavily doped surfaces.  

There exist many analytical and numerical models to assist this optimisation, and each involves a foray of 
assumptions.  In this paper, we examine three of the common assumptions: (i) quasi-neutrality, (ii) the use of 

effective recombination parameters as a boundary condition at the surface, and (iii) the use of Boltzman rather than 

the more complicated but more precise Fermi–Dirac statistics.  We examine their validity and the computational 

benefits of their inclusion.  We find that (i) the quasi-neutrality assumption is valid over a wide range of conditions, 
enabling a fast and relatively simple simulation of emitter recombination, (ii) the effective surface recombination 

velocity depends on doping under most conditions and can give the misleading impression that the density of 

interface defects depend strongly on surface concentration, and (iii) at carrier concentrations where Boltzmann 

statistics are invalid (above 1019 cm–3, and especially above 1020 cm–3), it is more difficult to mitigate the error by 
employing an effective model that combines degeneracy with band-gap narrowing, than to include the more general 

Fermi–Dirac statistics themselves. 
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1 INTRODUCTION 

 

 All silicon solar cells contain heavily doped surfaces 

to ensure low contact resistance, low surface 

recombination and low lateral resistance.  They are called 

emitters, diffusions, back-surface fields, front-surface 

fields and floating junctions.  As the doping increases, 
contact resistance and lateral resistance decrease (which 

is good), free carrier absorption increases (bad), and 

recombination first decreases (good) and then increases 

(bad).  Given these competing effects, it is desirable to 
optimise the dopant profiles at the surfaces, at least to 

within the constraints of low-cost manufacturing. 

 An optimisation of a cell’s heavily doped surfaces—

referred to as emitters from here on—is aided by the 
ability to accurately simulate their behaviour.  This is 

more easily said than done.  The dopant concentration 

varies over many orders of magnitude in a short distance 

causing significant variations in the minority carrier 
concentration, Auger recombination, Shockley–Read–

Hall recombination, carrier mobility, free-carrier 

absorption, effective masses, and last but not least, the 

band gap. Moreover, when the emitter is heavily doped, 
the semiconductor becomes degenerate and the carrier 

concentrations must be calculated with Fermi–Dirac 

statistics rather than the simpler Boltzmann statistics.  

More complicated still, the surface of an emitter 
constitutes an interface with a different material, which 

necessarily introduces interface defects and the 

possibility of surface charge. 

 There are many analytical and numerical models for 
simulating emitters.  In this paper, we discuss three of the 

assumptions that are employed in many of those models: 

(1) quasi-neutrality, (2) the effective recombination 
velocity as a boundary condition, and (3) Boltzmann 

statistics.  We describe conditions under which they are 

valid and invalid. 

  
 

 

 

2 SIMULATION TOOLS 

 

 We employ EDNA 2 [1, 2] to represent a model 

containing the quasi-neutrality assumption and PC1D [3] 

and Sentaurus [4] to represent models that do not. 

 EDNA 2 is an online computer simulation program 

that models recombination in a 1D emitter.  It is based on 
the freeware Excel model released in 2010 [2].  As well 

as being much faster than its predecessor, EDNA 2 has 

additional features: 

 models for incomplete ionisation of dopant atoms; 

 a selection of models for carrier mobility; 

 the choice of Fermi–Dirac or Boltzmann statistics 

that is independent of the selected band-gap 

narrowing model; 

 the ability to sweep input parameters to generate plots 

such as J0E vs surface concentration; 

 the choice of setting Seff, J0s, and soon, the full set of 

interface properties (Dit(E), p(E), n(E), and Q) to 
parameterise surface recombination; and 

 the option to set a J0E and determine surface 

parameters. 
EDNA 2 runs on a cloud-based server that has high 

computation speeds. The principle reason, however, that 

the computation time is short relative to its alternatives is 

that EDNA 2 assumes the emitter is ‘quasi neutral’.  It is 
also specifically designed to rapidly determine an 

emitter’s recombination parameters like J0E and IQE.  It 

does not solve a complete device but solely the emitter, 

which introduces error when recombination in or near the 
depletion region is significant. 

 Sentaurus is the most complete and accurate 

approach to modelling semiconductor devices.  For 

simulating emitters, it has practically all of the 
functionality of EDNA 2 and far more besides.  It does 

not assume quasi-neutrality, it allows 2D and 3D devices, 

and it simulates complete and sophisticated devices [4].   
 PC1D is the most commonly used program for 

simulating solar cells.  It is limited to Boltzmann and a 

single model for carrier mobility, band-gap narrowing 

and Auger recombination.  It does not assume quasi-

28th European Photovoltaic Solar Energy Conference and Exhibition

1672



neutrality, it simulates complete 1D devices, and it is fast, 

free and open source [3]. 

 
 

3 ASSUMPTION 1: QUASI-NEUTRALITY 

  

 The quasi-neutrality (QN) assumption states that the 

excess hole concentration p equals the excess electron 

concentration n.  This assumption is contained in many 
recent solar cell programs [1, 2, 5–7] and in many 
analytical emitter models [e.g, 8–10].  The Shockley 

diode equation is also limited to the QN regions of the 

cell. 

 When the QN assumption is applied, the carrier 
concentrations can be determined without recourse to the 

electric field.  That is, the three coupled differential 

equations that relate the electron concentration n, the hole 

concentration p, and the electric field (or potential ) can 
be simplified into one differential equation, making it 

much simpler and faster to solve.   
 The QN assumption is valid in regions where the 

electric field is small.  It becomes increasingly invalid as 

the gradient of the excess carriers increases, and it is 

entirely invalid in a depletion region (where the electric 
field is large).  The QN assumption is also invalid near 

the surface when surface charge is significant (i.e., when 

the surface is in accumulation, depletion or inversion). 

 In this section, we examine the applicability of the 
QN assumption for emitter modelling.  It is conducted by 

comparing the results of EDNA 2 with PC1D and 

Sentaurus. 

 Figure 1 plots the results of the comparison between 
EDNA 2 and PC1D.  This first comparison contains 

simple physical models, such as Boltmann statistics, 

constant carrier mobilities, and an exponential apparent 

band-gap narrowing model.  Figure 2 plots the results of 

the comparison between EDNA 2 and Sentaurus.  This 

second comparison contains more sophisticated models, 
including Fermi–Dirac statistics, Klaassen’s mobility 

model, and Schenk’s band-gap narrowing.   Appendix A 

describes the simulation inputs in labourious detail. 

 The upper graphs in Figures 1 and 2 plot the J0E 
determined from the programs as a function of (a) surface 

recombination velocity and (b) surface dopant 

concentration Ns.  The figures indicates a close agreement 

between EDNA 2 and PC1D for the simpler comparison, 
and between EDNA 2 and Sentaurus for the more 

sophisticated comparison.  

 The lower graphs in Figures 1 and 2 plot the relative 

difference between the simulations;  they show that J0E 
determined by EDNA 2 tends to be a little less than that 

determined by PC1D or Sentaurus, but by no more than 

4% over the tested range of inputs (except for the most 

heavily doped diffusion in the comparison wit Sentaurus, 
for which it is 6% smaller).  The source of these small 

discrepancies was not determined. 

 It is concluded from this study that, over a wide 

variety of emitters, and with and without sophisticated 
semiconductor models, the QN assumption can be 

imposed with little loss in accuracy.  The error introduced 

into the emitter’s J0E by the QN assumption is within the 

range +0.3% to –6%. 
 

 

  

 

Figure 1:  The upper graphs plot J0E determined from PC1D and EDNA 2 as a function of (a) surface recombination 

velocity Seff with surface dopant concentration NS = 3.05  1019 cm–3 and (b) Ns with Seff = 3000 cm/s;  the lower graphs plot 

the relative difference in J0E determined by EDNA 2 compared to the J0E determined by PC1D. 
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4 ASSUMPTION 2:  THE EFFECTIVE SURFACE 
RECOMBINATION VELOCITY 

 

4.1 Introduction to Seff 

 A well-known parameter that quantifies surface 
passivation is the effective surface recombination 

velocity Seff.  It is employed as a boundary condition in 

the current versions of Quokka [5], CoBoGUI [11, 12] 

and EDNA [1, 2], as well as a host of analytical equations 
[8–10]. 

 The merit in using Seff is that it incorporates many 

aspects of surface recombination into a single parameter.  

Specifically, it combines the interface state density 

Dit(E), the capture cross section of electrons n(E) and 

holes p(E), and the net surface charge Q whether it be in 
an insulator or at an insulator–semiconductor interface.  

The drawback in using Seff is that by lumping various 

physical phenomena together, it is difficult to recognise 

the physical reasons behind its behaviour.  Under some 

conditions, for example, the application of Seff can be 
misleading, making it easy to use erroneous values of Seff 

during emitter simulations. 

 When Q is significant, Seff becomes dependent on the 

surface dopant concentration Ns, even when the actual 
SRH surface recombination velocity parameters, Sn0 and 

Sp0, are independent of Ns  [13–15].  Plots of Seff against 

Ns invariably exhibit a strong increase of Seff with Ns, and 

it has subsequently been construed that the surface defect 
density must increase with Ns when in fact there might be 

no such evidence.  This is not to say that the defect 

density cannot increase with Ns, only that it might not 

necessarily increase with Ns.  In fact, for Al2O3–Si 

interfaces, it has recently be concluded that Sn0 and Q are 
relatively constant over a wide range of Ns [17]. 

 In this section, we describe the conditions under 

which Seff is independent of Ns.  We also describe an 

alternative surface parameter J0s that is independent of Ns 
when the surface charge is large [18].  (The J0s is 

analogous to the popular emitter saturation current 

density J0E, as described in Section 4.3).  The purpose of 

employing these quasi-parameters is that (i) they 
represent a single metric for the quality of a surface 

passivation scheme, and (ii) they can readily measured by 

conventional lifetime measurements on undiffused 

silicon.  
 

4.2 The dependence of Seff on Ns 

 The effective surface recombination velocity Seff is 

defined as 

 Jrec = q  Us = q  Seff  nd (1) 

where Jrec is the current density that flows into the 
surface to recombine, q is the charge of an electron, Us is 

the recombination rate at the surface in cm–2s–1, and nd 
is the excess carrier concentration ‘near’ the surface.  The 

subscript d refers to the distance from the surface at 

which the carrier concentrations are no longer affected by 
surface charge.  This is illustrated in Figure 3.  Usually 

this distance is sufficiently close to the surface s that 

there is negligible difference between the doping 

concentration at s and d.  The recombination and 
generation rates between s and d tend to be negligible 

compared to Us. 

 

Figure 2:  The upper graphs plot J0E determined from Sentaurs and EDNA 2 as a function of (a) Seff with NS = 1  1019 cm–

3 and (b) Ns with Seff = 1000 cm/s;  the lower graphs plot the relative difference in J0E determined by EDNA 2 compared to 

J0E determined by Sentaurus. 
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 We now derive Seff for an n-type emitter.  In this case, 

electrons are the majority carriers and holes are the 

minority carriers.  More detailed derivations are given in 

[13–18]. 
 Due to the high dopant concentration at d, Equation 1 

can be rewritten 

 Seff  = Us / pd , (2) 

where pd is the hole concentration at d and equal to nd 
(since the excess carrier concentration is the same for 

electrons and holes when quasi-neutrality is valid). 
 Now, at s, the hole concentration is far smaller than 

the electron concentration, so Shockley–Read–Hall 

(SRH) recombination at the surface can be given by the 

simple relation, 

 Us = Sp0  ps (3) 

where Sp0 is the hole recombination velocity, which 

depends solely on the surface defects, i.e. Sp0 = Ndvthp.  
In fact, Equation 3 is valid only under the provisos that 

(i) the principle defect is within the quasi-Fermi levels of 

trapped charges; (ii) ns/p >> ps/n, which is valid in an 
n-type emitter except when there is a large negative 

charge at the surface; and (iii) the surface concentrations 
are not near their equilibrium values (i.e. psns >> ni

2), 

which is valid in all conditions except in the dark with 

little or no applied bias.  That may sound like a lot of 

provisos, but they are regularly justifiable for an emitter. 

 When Q is too small to affect the carrier 

concentrations, ps = pd, and Equations 2 and 3 combine to 

give, 

 Seff = Sp0. (4) 

This states that in this case Seff depends solely on the 

surface defects and is independent of Q of Ns.  This 

equality is regularly assumed (despite often being 

unjustified!). 
 When Q is sufficiently large that it alters the carrier 

concentrations near the surface, there is ps  pd.  This is 

represented by the band-bending depicted in Figure 3.  In 

such case,  and when the quasi-Fermi levels are constant 

between s and d, ps = pd·exp(s/VT), where s is the 
band-bending in Volts and VT is the thermal voltage.  

Hence, 

          
  

  
        (

  

  
). (5) 

Equation 5 states that Seff is less than Sp0 when Q is 

positive (because minority carrier holes are repelled from 

the surface, making the bands bend upwards and s 
negative);  and Seff is greater than Sp0 when Q is negative 

(s is positive). 

 If s were dependent solely on Q, then Seff would 
depend only on the surface defects and Q, making it a 

convenient and uncomplicated metric to quantify the 

surface passivation provided by a charged dielectric.  But 

s also depends on Ns and nd [13–21].  This means that 
when Q is significant, Seff is not just related to the surface 
defects, but also to the doping and the excess carrier 

concentration.  Being unaware of this dependence makes 

it easy to misinterpret a plot of Seff against Ns and to 

conclude that Sp0 increases with doping when it might 
not! 

 Figure 4 shows the conditions under which s is 
sufficiently small that there is no doping dependence 

under accumulation or inversion.  This region is coloured 

yellow.  It indicates that for typical undiffused wafers 

(Ns < 1016 cm–3), Seff is probably never constant with 
doping, since it is unlikely that Q would ever be smaller 

than 3  109 cm–2.  Consequently, using Seff to represent 
surface passivation has no merit without also stating Ns.  

Thus, for undiffused wafers, one cannot determine Seff at 

some Ns and apply it at another Ns, even if Sn0 and Q are 
independent of Ns. 

 Figure 4 also shows that for dopant-diffused wafers 

(Ns > 1018 cm–3), Seff is only constant when there is small 

to moderate Q.  Has Q ever been measured for diffused 
silicon?  Is it possible that the apparent dependence of Seff 

on Ns previously observed for Ph-doped SiO2–Si 

 

Figure 3:  Band diagram at the surface of an illuminated 

n-type semiconductor coated with a positively charged 

insulator. 

 

Figure 4:  Contours of Q vs Ns at which one can assume 
J0s and Seff are independent of Ns in equilibrium. The 

contours represent a 10% error in the calculation of 

surface carrier concentration and therefore Us, for low 

injection, c-Si, and 300 K; valid for either p- or n-type. 
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interfaces (e.g., [22–26]) is in fact due to a large Q?  For 

some surface treatments, Seff of B-doped silicon was 

found to vary little over Ns = 3–300  1017 cm-3 [27];  and 
in a recent study of Al2O3–Si, it was concluded that 

neither Q nor Sp0 varied over a wide range of B-doped Ns 

[17]. 
 We take this opportunity to re-evaluate previously 

published data for SiNx-passivated Ph-diffused silicon 

[26].  In that study, Seff was extracted from simulations of 

J0e measurements. Zero surface charge Q was assumed, 
and the blue line in Fig. 5 was obtained [26], indicating 

that Seff increases strongly with the phosphorus dopant 

density at the surface Ns. We repeated those simulations, 

for a constant Q of +2 and +3  1012 C/cm2
, as is typically 

measured at low dopant densities for SiNx. We then plot 
Sp0 (not Seff because electrostatics are now considered) 

against Ns as the green and red lines in Fig. 5.  By 

including this plausible level of surface charge in the 

calculations, we find that Sp0 increases only slowly over 

the range Ns = 1 to ~7  1019 cm-3. At higher Ns, Sp0 

might be overestimated because we neglect phosphorus 
precipitation, which often occurs at high Ns and 

introduces additional SRH recombination.  Sp0 is a direct 

measure of interface quality effects.  That it appears 

rather insensitive to Ns might be explained by (i) the P 
atoms have 5 instead of 4 valence bonds, which may give 

an additional degree of freedom to the lattice for relaxing 

the twisted, stretched and dangling bonds at the interface, 

or (ii) dopant states may simply introduce very few defect 

states at the interface. 

 

Figure 5:  The surface recombination velocity parameter 

Sp0 of SiNx-passivated surfaces and its dependence on the 

phosphorus dopant concentration at the surface, assuming 
the indicated interface charge Q. Sp0 is extracted from 

simulations of J0E measurements as in Ref. [26]. 

 
 

4.3 The surface saturation current density J0s 

 An alternative to Seff is the “surface recombination 

current density” J0s, which is introduced in Ref. [18]. 
Contrary to Seff, it is independent of Ns when Q is large 

but proportional to Ns when Q is small.  Thus, it is 

preferable to use J0s when Q is large, and Seff when Q is 

small. 
 The green region in Figure 4 is where J0s is 

independent of Ns.  To be more specific, the contours in 

Figure 4 show the points where there is a 10% error in 

the minority carrier concentration at the surface.  Three 

of the four contours are governed by the ratio Q2/Ns, 

where Q2/Ns = 1.50 × 107 cm for the green line in 

accumulation, 1900 cm for the yellow line in 
accumulation, and 1600 cm for the yellow line in 

inversion.  The green line in inversion does not have an 

explicit solution but is approximately Q1.85/Ns = 1.5 × 106 

cm. 
 The definition of J0s is in analogy to the saturation 

current in the Shockley diode equation.  It is given by 

               [
    

   
   ]. (6) 

When the quasi-Fermi levels are flat between s and d, this 

is equivalent to 

               [
    

   
   ]. (7) 

and when Boltzmann statistics apply, 

          [   (
 

  
)   ], (8) 

where V is the separation of quasi-Fermi levels.  The 
definition of J0s is examined in more detail in Ref. [18]. 

 When Q is sufficiently large that J0s is constant with 

Ns (whether in accumulation or inversion), J0s can be 

succinctly written in terms of Sp0 and Q [13, 18]: 

           
      

  
    

 . (9) 

4.4 Summary 

 We presented the conditions under which Seff and J0s 

are independent of Ns and showed how they relate to Q 

and Sp0 (or Sn0).  When neither Seff nor J0s can be 
justifiably applied, emitters cannot be accurately 

modelled without accounting for Q and Ns, and solutions 

can be found in the manner of Refs. [28, 29].  Preferably, 

this is performed with inputs for the energy dependent 
density of states of each donor and acceptor defect, their 

associated capture cross sections, and insulator charge. 

 We also note that Sp0 and Q for Al2O3–Si interface 

have recently been found to be constant over a wide 
range of Ns [17] for several different deposition and 

annealing conditions.  In passivation schemes where this 

is the case, emitter modelling far simpler than is currently 

appreciated, since one can then measure Sp0 and Q on an 
undiffused sample and apply those values at any other Ns.  

Over certain ranges of Ns (see Figure 4), one can also 

combine Sp0 and Q into a single parameter (either Seff 

from Equation 4 or J0s from Equation 9), making emitter 
simulation simpler and faster. 

 

 

5 ASSUMPTION 3: BOLTZMANN STATISTICS. 
  

In non-degenerate semiconductors, the number of free 

carriers is small relative to the number of states that those 

carriers can occupy.  The conentration of electrons and 
holes can therefore be described by ideal-gas theory.  

When this assumption is valid, Boltzmann (B) statistics 

are applicable and the concentration of free electrons 

depends exponentially on the Fermi energy, 

        (
      

  
). (10) 

An equivalent equation exists for holes. 

 B statistics do not accurately determine the majority 

carrier concentration when carrier–carrier interactions are 
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significant.  In c-Si at 300 K, this occurs when the doping 

exceeds 1019 cm–3 [26].  In such case, the more general 

Fermi–Dirac (FD) statistics are required, by which  

          (
      

  
). (11) 

 Figure 6 shows how the application of (10) rather 
than (11) introduces error at high phosphorus dopant 

concentrations.  In Figure 6(a), the equilibrium hole 

concentration p0 (i.e., the minority carrier concentration) 

is plotted as a function of the ionised dopant 
concentration ND when one applies B (green) and FD 

(orange) statistics.  The dashed lines show p0 when band-

gap narrowing (BGN) is omitted and the solid lines show 

p0 when BGN is included using Schenk’s model for BGN 
[30, 2].  The figure shows a marked deviation between B 

and FD statistics at ND > 1019 cm–3. 

 Figure 6(b) plots the relative error in p0 when B 

statistics are used instead of FD.  (The error is the same 

with or without BGN).  The figure indicates that the 

relative error in p0 is 10% at 1019 cm–3 and over 100% at 

1020 cm–3.  Note that p0 is overestimated by B statistics 
and, consequently, the calculated recombination is also 

overestimated, especially at ND > 1020 cm–3 where Pauli-

blocking becomes significant.  This ultimately leads to an 

overestimation of J0E when modelling heavily doped 
emitters with (10).  The amount to which J0E is 

overestimated has a complicated dependence on the 

dopant profile and surface recombination. 

 In addition to degeneracy, BGN also causes a 
deviation in p0 at high doping [26].  As evident in 

Figure 5, the deviation due to BGN occurs at a lower ND 

(~ 1017 cm3), and the effect on p0 is the opposite to that 
caused by degeneracy. 

 The opposing trends introduced by degeneracy and 

BGN make p0(ND) reasonably ‘exponential’ until ND > 
1020 cm–3 (see the solid orange line in Figure 5).  This has 

been observed and exploited in a number of studies (e.g., 

[22–25, 27, 38, 39]).  They find that the influence of 

degeneracy and BGN can be adequately combined into a 
simple exponential for ND < 1020 cm–3, and thus the 

equations for B statistics can still be used by introducing 

‘apparent BGN’ that  combines degeneracy and BGN. 

 A recent example from Yan and Cuevas is plotted in 
Fig. 6(a) as the dotted black line [36].  Its equation is  

         (
      

         

  
), (12) 

where         = 13.0  10–3[ln(ND/1017)] in meV for ND 

> 1017 cm–3 and zero otherwise, Ec
0 is the equilibrium 

conduction band energy.  A similar equation is employed 
in PC1D [3]. 

 Although there are various inconsistencies by 

applying this approach [31, 32], the inclusion of an 

exponential apparent BGN describes p0(ND) very well for 
ND < 1020 cm–3. At higher ND, Pauli-blocking becomes 

strong, and the apparent BGN would need to decrease 

strongly to account for the increasing influence of 

degeneracy. To our knowledge, there is no apparent 
model that describes this “turning point”, and thus, 

industrial phosphorus-diffused emitters, which typically 

have ND > 1020 cm–3, cannot yet be accurately modelled 

by apparent BGN models. 
 FD statistics are often avoided because F1/2 cannot be 

rigorously expressed analytically.  But there exist many 

explicit approximations [33–35] to the FD integral that 

significantly reduce computation time while introducing 

little error.  Having evaluated various options, we 

implemented the algorithm described in [34] into EDNA 

2.  Compared to a fine-resolution numerical solution of 

the integral, the approximation gives a 100-fold reduction 
in computation time at a maximum cost of 0.002% 

relative error for Fermi levels within 100kT of the band 
edges.  We also rely on an analytical approximation to 

facilitate rapid evaluation of the inverse FD function 

[35];  this algorithm introduces less than 0.003% relative 

error in the carrier concentrations within the 

aforementioned range of Fermi levels (100kT from the 
band edge). 

 Thus, with fast and accurate application of FD 

statistics, we conclude that for heavily doped silicon it is 

preferable to account for degeneracy correctly, and to 
apply a separate model for BGN.  Yan and Cuevas give 

such an option determined from experimental data for ND 

< 1020 cm–3: 

          (
       

      

  
), (13) 

where    = 4.2  10–5  [ln(ND/1014)]3 for ND < 1020 
cm-3 [36]. 

 We emphasise, however, that the simulation of very 
heavily doped emitters is problematic irrespective of 

whether FD statistics are implemented. The main reason 

is that phosphorus precipitates readily in silicon and 

causes, in many cases, more SRH recombination than 
there is Auger recombination [37]. The precipitates are 

stable under usual processing conditions, e.g., during 

drive-in, and therefore may affect a whole series of 

experiments consistently (potentially in experimental 
studies designed to determine BGN). This consistency 

may give the impression that the SRH recombination can 

 

Figure 6:  (a) Equilibrium minority carrier concentration 
p0 as a function of the ionised phosphorus concentration 

ND, and (b) relative error in p0 by applying B instead of 

FD stats. 
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be included as an apparent BGN expression. However, 

such apparent BGN models only work for certain 

amounts of precipitation and do not have general 

applicability.  Moreover, inactive phosphorus usually 
exists in various forms to various relative amounts, from 

interstitial phosphorus atoms, inactive phosphorus 

clusters, fine silicon phosphide (SiP) precipitates, to rod-

like precipitate structures. Hence, we do not expect that 
such an apparent BGN expression can ever be universally 

applicable.  

Apart from precipitates, there are additional 

uncertainties in simulating very heavily doped emitters:  
(i) the minority carrier mobility is not very well known in 

heavily doped silicon; (ii) Auger coefficients are not well 

established for high dopant concentrations; and (iii) the 

effective electron mass starts to increase above  ND  > 
1020 cm–3, which is neglected in Schenk’s BGN model.  

Because POCl3 furnaces are a very cheap means of 

forming an emitter, it can be expected that highly doped 

emitters will continue to be used in the commercial 
production of silicon solar cells.  Thus, the development  

of accurate simulation models for Ns  > 1020 cm–3 is not 

just enjoyable, it has industrial relevance as well.  
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APPENDIX A:  INPUTS IN SIMULATIONS 

 

A.1 Comparison of EDNA 2 to PC1D 

 The temperature was 300 K. The bulk was p-type 

with NA = 1.335  1015 cm–3.  The diffusion was p-type 

with an ERFC profile defined by a depth factor of 0.5 μm 

and a variable surface concentration. The intrinsic carrier 

concentration was 1010 cm–3 (where in EDNA 2 this was 

attained with the Passler model for the intrinsic band gap, 

Sentaurus Formula 2 for the density of states, and a band 
gap multiplier of 1.00385).  PC1D defaults were used for 

band gap narrowing (i.e., del Alamo model with an onset 

of 1.4  1010 cm–3 and a slope of 0.014 eV), Auger 

recombination (Cn LLI = 2.2  10–31 cm6/s, Cp LLI = 9.9  

10–32 cm6/s, CHLI = 1.66  10–30 cm6/s), and radiative 

recombination (B = 9.5  10–15 cm3/s).  The mobility of 
electrons and holes was fixed at 1360 and 470 

cm2V–1s-1, respectively.  Bulk SRH recombination was 

made negligible by setting n0 = p0 = 1012 μs and Et = Ei. 
The surface recombination velocity was varied (where in 

PC1D, the electron and hole recombination velocities 
were equal, Sn = Sp).  Boltzmann statistics and 100% 

ionisation were instituted. 

 To determine J0E in PC1D, identical diffusion were 

introduced to the front and rear surfaces and the width 
was 500 μm.  J0E was determined for a range of excess 

carriers by setting the front illumination at 1190 nm and 

varying the intensity from 10,000 to 0.0001 W/cm2 in 

logarithmic steps.  This gave very close to uniform 
generation and therefore a symmetrical carrier profile. At 

each intensity, the J0E was determined by taking the net 

recombination, subtracting the bulk Auger and radiative 

recombination, and dividing by 2pn/(qni
2) where p and 

n were the carrier concentrations at 497 μm.  By this 

method, J0E was found to be constant over a wide range 

of n, increasing from about n > 1015 cm–3.  Figure 1 

shows the J0E for n < 1015 cm–3.  In EDNA 2, J0E was 
determined at a junction voltage of 0.55 V. 

 

 

A.2 Comparison of EDNA 2 to Sentaurus 

 The temperature was 300 K. The bulk was p-type 

with NA = 1  1014 cm–3.  The diffusion was n-type with a 
Gaussian profile defined by a depth factor of 0.5 μm and 

a variable surface concentration.  Identical models were 

applied for determining the intrinsic band gap (Sentaurus 
with a band gap multiplier of 1.00547), the density of 

states (Sentaurus Formula 1), band gap narrowing 

(Schenk), carrier mobility (Klaassen), Auger 

recombination (Altermatt), and radiative recombination 

(B = 4.73  10–15 cm3/s).  Bulk SRH recombination was 

included with n0 = p0 = 100 μs and Et = Ei. The effective 

surface recombination velocity was varied.  Fermi–Dirac 
statistics and 100% ionisation were instituted.  J0E was 

determined at a junction voltage of 0.65 V. 

 The device that was modelled in Sentaurus had a 

width in the x-dimension of 200 μm and contained four 
contacts.  Two contacts were located on the front surface 

and two on the rear.  On both front and rear, the contacts 

were 2 μm wide and located at the outer edges (leaving 

196 μm between the contacts).  The contacts were 

sufficiently small that contact recombination contributed 

negligibly to the total recombination in the diffusion, and 

the lateral variation in the J0E was also negligible.  The 

J0E was calculated from pn at 0.65 V, p0n0 at 0 V, and 
the hole current density Jp, at a position very close to the 
metallurgical junction, using the equation 

Jp = J0E( pn / p0n0). 
 

28th European Photovoltaic Solar Energy Conference and Exhibition

1679


